3.3 พันธะโคเวเลนต์
พันธะโคเวเลนต์ คือ พันธะเคมีที่เกิดขึ้นระหว่างอะตอมของธาตุอโลหะกับธาตุโลหะที่เข้ามาสร้างแรงยึดเหนี่ยวต่อกัน เนื่องจากธาตุอโลหะจะมีสมบัติเป็นตัวรับอิเล็กตรอนที่ดีและยากต่อการสูญเสียอิเล็กตรอน ดังนั้นอิเล็กตรอนของธาตุทั้งสองจึงต่างส่งแรงดึงดูดเพื่อที่จะดึงดูดอิเล็กตรอนของอีกฝ่ายให้เข้าหาตนเอง ทำให้แรงดึงดูดจากนิวเคลียสของอะตอมทั้งสองหักล้างกัน ดังนั้นอิเล็กตรอนจึงไม่มีการหลุดไปอยู่ในอะตอมใดอะตอมหนึ่งโดยเฉพาะ แต่จะมีลักษณะเหมือนเป็นอิเล็กตรอนที่อยู่กึ่งกลางระหว่างอะตอมทั้งสอง เรียกอิเล็กตรอนที่อยู่กึ่งกลางอะตอมทั้งสอง เรียกอิเล็กตรอนที่ถูกอะตอมใช้ร่วมกันในการสร้างพันธะเคมีว่า อิเล็กตรอนคู่ร่วมพันธะ(Bonding pair electron) พันธะโคเวเลนต์ของอะตอมเกิดขึ้นจากการใช้อิเล็กตรอนร่วมกันของอะตอม โดยอาจเกิดจากการใช้อิเล็กตรอนร่วมกันเพียงคู่เดียว สองคู่ หรือสามคู่ก็ได้ขึ้นอยู่กับอะตอมคู่ที่เข้ามร่วมสร้างพันธะกันว่ายังขาดเวเลนซ์อิเล็กตรอนอยู่อีกเท่าใดจึงจะครบ 8 ตามกฎออกเตต ดังนั้นพันธะโคเวเลนต์จึงสามารถแบ่งออกได้เป็น 3 ชนิด ตามจำนวนอิเล็กตรอนที่มีการใช้ร่วมกัน ดังนี้
1.พันธะเดี่ยว (single bond) คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกันมีการใช้ร่วมสร้างพันธะต่อกันมีการใช้อิเล็กตรอนร่วมกัน 1 คู่
2.พันธะคู่ (double bond) คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกันมีการใช้อิเล็กตรอนร่วมกัน 2 คู่
3.พันธะสาม (triple bond) คือ พันธะโคเวเลนต์ที่เกิดจากอะตอมคู่ที่เข้ามาร่วมสร้างพันธะต่อกัน มีการใช้อิเล็กตรอนร่วมกัน 3 คู่
ลักษณะสำคัญของพันธะโคเวเลนต์
พันธะโคเวเลนต์ เป็นพันธะที่เกิดจากการใช้อิเล็กตรอนร่วมกันของอะตอมที่มีค่าพลังงานไอออไนเซชันสูง กับอะตอมที่มีค่าพลังงานไอออไนเซชันสูงด้วยกัน
ธาตุที่เกิดพันธะโคเวเลนต์ได้เป็นอโลหะ เพราะอโลหะมีพลังงานไอออไนเซชัน (IE) ค่อนข้างสูง จึงเสียอิเล็กตรอนได้ยาก จึงไม่มีฝ่ายใดเสียอิเล็กตรอนแต่จะใช้อิเล็กตรอนร่วมกัน
การเกิดพันธะโคเวเลนต์
การเกิดพันธะโคเวเลนต์ เกิดจากอะตอมส่งอิเล็กตรอนออกมาฝ่ายละเท่าๆกัน ใช้อิเล็กตรอนร่วมกัน ให้อะตอมมีเวเลนต์อิเล็กตรอนครบ 8 (เป็นไปตามกฎออกเตต)
เช่นการเกิดโมเลกุลของคลอรีน
อะตอมของคลอรีนมีการจัดเรียงอิเล็กตรอน เป็น 2 , 8 , 7
Cl = 2 8 7 ดังนั้น คลอรีนมีเวเลนต์อิเล็กตรอน = 7 จึงต้องการอิเล็กตรอนอีก 1 ตัว เพื่อให้เวเลนต์อิเล็กตรอนครบ 8 อะตอมจึงจะเสถียร
อิเล็กตรอนที่อะตอมใช้ร่วมกัน เรียกว่า อิเล็กตรอนคู่ร่วมพันธะ
อิเล็กตรอนตัวอื่นๆที่ไม่ได้ใช้ร่วมในพันธะ เรียกว่า อิเล็กตรอนคู่โดดเดี่ยว หรืออิเล็กตรอนคู่อิสระ
ชนิดของพันธะโคเวเลนต์ มี 3 ชนิด
1.พันธะเดี่ยว เกิดจากอะตอมใช้เวเลนต์อิเล็กตรอนร่วมกัน 1 คู่ เช่น
2. พันธะคู่ เกิดจากอะตอมใช้เวเลนต์อิเล็กตรอนร่วมกัน 2 คู่ เช่น
3. พันธะสาม เกิดจากอะตอมใช้เวเลนต์อิเล็กตรอนร่วมกัน 3 คู่ เช่น
การเขียนสูตรและการเรียกชื่อสารโคเวเลนต์
สูตรโมเลกุล โดยทั่วไปเขียนสัญลักษณ์ของธาตุที่เป็นองค์ประกอบเรียงตามลำดับของธาตุ และค่าอิเล็กโทรเนกาติวิตี ( เรียงลำดับก่อนหลังดังนี้ B , Si , C , P , H , S , I , Br , Cl , O และ F ) แล้วระบุจำนวนอะตอมของธาตุที่เป็นองค์ประกอบของโมเลกุล เช่น CO2 , HCl . NH3 , PCl3 , NO3 ฯลฯ
สูตรโครงสร้าง คือสูตรที่แสดงให้ทราบว่า 1 โมเลกุลของสารประกอบด้วยธาตุใดบ้าง อย่างละกี่อะตอม และอะตอมของธาตุเหล่านั้นมีการจัดเรียงตัวหรือเกาะเกี่ยวกันด้วยพันธะอย่างไร ซึ่งแบบเป็น 2 แบบคือ
สูตรโครงสร้างแบบจุด คือสูตรโครงสร้างที่แสดงถึงการจัดอิเล็กตรอนวงนอกสุดให้ครบออกเตต ในสารประกอบนั้น โดยใช้จุด ( . ) แทนอิเล็กตรอน 1 ตัว
สูตรโครงสร้างแบบเส้น คือสูตรโครงสร้างที่แสดงถึงพันธะเคมีในสารประกอบนั้นว่าพันธะใดบ้าง โดยใช้เส้น ( - ) แทนพันธะเคมี เส้น 1 เส้น แทนอิเล็กตรอนที่ใช้ร่วมกัน 1 คู่
การอ่านชื่อสารโคเวเลนต์ มีวิธีการอ่านดังนี้
อ่านจำนวนอะตอมพร้อมชื่อธาตุแรก (ในกรณีธาตุแรกมีอะตอมเดียวไม่ต้องอ่านจำนวน )
อ่านจำนวนอะตอม และชื่อธาตุที่สอง ลงท้ายเป็น ไ-ด์ (ide )
เลขจำนวนอะตอมอ่านเป็นภาษากรีก คือ
1 = mono 2 = di
3 = tri 4 = tetra
5 = penta 6 = hexa
7 = hepta 8 = octa
9 = nona 10 = deca
ตัวอย่าง
NO2 อ่านว่า ไนโตรเจนไดออกไซด์
Cl2O อ่านว่า ไดคลอรีนโมโนออกไซด์
P4O10 อ่านว่า เตตระฟอสฟอรัสเดคะออกไซด์
CCl4 อ่านว่า คาร์บอนเตตระคลอไรด์
ความยาวพันธะและพลังงานพันธะ
พลังงานพันธะ หมายถึง พลังงานที่น้อยที่สุดที่ใช้เพื่อสลายพันธะที่ยึดเหนี่ยวระหว่างอะตอมคู่หนึ่งๆในโมเลกุลในสถานะแก๊ส พลังงานพันธะสามารถบอกถึงความแข็งแรงของพันธะเคมีได้ โดยพันธะที่แข็งแรงมากจะมีพลังงานพันธะมาก และพันธะที่แข็งแรงน้อยจะมีพลังงานพันธะน้อย
พลังงานพันธะเฉลี่ย หมายถึง ค่าพลังงานเฉลี่ยของพลังงานสลายพันธะ ของอะตอมคู่หนึ่งๆ ซึ่งเฉลี่ยจากสารหลายชนิด เช่น การสลายโมเลกุลมีเทน (CH4) ให้กลายเป็นอะตอมคาร์บอนและไฮโดรเจน มีสมการและค่าพลังงานที่เกี่ยวข้องดังนี้
CH4(g) + 435 kJ → CH3(g) + H(g)
CH3(g) + 453 kJ → CH2(g) + H(g)
CH2(g) + 425 kJ → CH(g) + H(g)
CH(g) + 339 kJ → C(g) + H(g)
เราจะเห็นได้ว่าการสลายพันธะระหว่าง C-H ในแต่ละพันธะของโมเลกุลมีเทน (CH4) จะใช้พลังงานไม่เท่ากัน ดังนั้น เมื่อนำค่าพลังงานทุกค่ามาเฉลี่ย ก็จะได้เป็นค่าพลังงานพันธะเฉลี่ยนั่นเอง
ความยาวพันธะ หมายถึง ระยะระหว่างจุดศูนย์กลางของนิวเคลียสของอะตอมทั้งสองที่เกิดพันธะกัน (หน่วยเป็น Angstrom , 10-10 m , A0 )
ความยาวพันธะระหว่างอะตอมคู่หนึ่ง จึงหาได้จากค่าเฉลี่ยของความยาวพันธะระหว่างอะตอมคูjเดียวกันในโมเลกุลต่างๆ เมื่อกล่าวถึงความยาวพันธะ โดยทั่วไปจึงหมายถึง "ความยาวพันธะเฉลี่ย"
ความสัมพันธ์ระหว่างความยาวพันธะกับพลังงานพันธะ
ความยาวพันธะและพลังงานพันธะ จะสามารถเปรียบเทียบกันได้ก็ต่อเมื่อเป็นพันธะที่เกิดจากอะตอมของธาตุคู่เดียวกัน ถ้าเป็นอะตอมต่างคู่กันเทียบกันไม่ได้ เช่น
ดังนั้น ถ้าความยาวพันธะยิ่งสั้น พลังงานพันธะก็จะยิ่งมาก หรือพันธะมีความเสถียรมาก ซึ่งจากรูปเราสามารถสรุปได้ ดังนี้
1. ความยาวพันธะ พันธะเดี่ยว > พันธะคู่ > พันธะสาม
2. พลังงานพันธะ พันธะสาม > พันธะคู่ > พันธะเดี่ยว
|
รูปร่างโมเลกุลโคเวเลนต์ที่ควรรู้จัก
1.รูปร่างเส้นตรง(Limear)
โมเลกุลของสารโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 2 พันธะ จะเป็นพันธะชนิดใดก็ได้ และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว โมเลกุลจะมีรูปร่างเป็นเส้นตรง
2. รูปร่างสามเหลี่ยมแบนราบ (Trigonal planar)
โมเลกุลโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 3 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว โมเลกุลจะมีรูปร่างเป็น สามเหลี่ยมแบนราบ
3. รูปร่างทรงสี่หน้า
โมเลกุลโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 4 พันธะ (โดยไม่คำนึงถึงชนิดของพันธะ) และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว โมเลกุลจะมีรูปร่างเป็น ทรงสี่หน้า
4. รูปร่างพีระมิดฐานสามเหลี่ยม (Trigonal bipyramkial)
5. ทรงแปดหน้า (Octahedral)
โมเลกุลโคเวเลนต์ใดๆ ถ้าอะตอมกลางมี 6 พันธะ (ไม่คำนึงถึงชนิดของพันธะ) และอะตอมกลางไม่มีอิเล็กตรอนคู่โดดเดี่ยว รูปร่างโมเลกุลเป็น ทรงแปดหน้า
6. รูปร่างพีระมิดฐานสามเหลี่ยม
7. รูปร่างมุมงอ
ประเภทของแรงยึดเหนี่ยวระหว่างโมเลกุลโคเวเลนต์ มีดังนี้
1. แรงลอนดอน(london foece ) เป็นแรงยึดเหนี่ยวระหว่างโมเลกุล ยึดเหนี่ยวกันด้วยแรงอ่อนๆ ซึ่งเกิดขึ้นในสารทั่วไป และจะมีค่าเพิ่มขึ้นตามมวลโมเลกุลของสาร
2. แรงดึงดูดระหว่างขั้ว (dipole – dipole force ) เป็นแรงดึงดูดทางไฟฟ้าอันเนื่องมาจากแรงกระทำระหว่างขั้วบวกกับขั้วลบของโมเลกุลที่มีขั้ว
สารโคเวเลนต์ที่มีขั้ว มีแรงยึดเหนี่ยวระหว่างโมเลกุล 2 ชนิดรวมอยู่ด้วยกันคือ แรงลอนดอนกับแรงดึงดูดระหว่างขั้ว และเรียกแรง 2 แรงรวมกันว่า แรงแวนเดอร์วาลส์
ไม่มีความคิดเห็น:
แสดงความคิดเห็น